
1

Techniques for fault-tolerant
quantum error correction

Ben Reichardt
UC Berkeley

0/1
Fault-tolerant, largerC

 High tolerable noise
 Low overhead

Quantum fault-tolerance problem

2

Physical gate error rate p

Lo
gi

ca
l g

at
e

er
ro

r r
at

e

 Idea: Encode ideal/logical circuit into quantum error-correcting code. Apply
gates directly on the encoded data, each gate followed by error correction.

level-1 CNOT
failure rate

physical
failure rate

CNOT locations

Encoding for fault tolerance

– m-qubit, t-error correcting code
[[m, 1, d=2t+1]]

1/c1/t

p
c pt+1

0.0050.010.0150.020.0250.0050.010.0150.020.025

Lo
gi

ca
l g

at
e

er
ro

r r
at

e

EC

EC

level-k CNOT
failure rate

level-(k-1)
failure rate

CNOT locations

EC2

EC2

Concatenated encoding for arbitrary accuracy

– m-qubit, t-error correcting code
[[m, 1, d=2t+1]]

 Idea: Encode ideal/logical circuit into quantum error-correcting code. Apply
gates directly on the encoded data, each gate followed by error correction.

Physical gate error rate p

Lo
gi

ca
l g

at
e

er
ro

r r
at

e

1/c1/t

p
c pt+1

0.0050.010.0150.020.0250.0050.010.0150.020.025

Lo
gi

ca
l g

at
e

er
ro

r r
at

e

EC1

EC1

3

Threshold theorems
For a physical error rate ε < εc, an N-gate ideal quantum
circuit can be reliably simulated with N poly(log N)
physical gates.

– Independent probabilistic noise
– εc > 0 [Aharonov & Ben-Or ‘97, Kitaev ‘97]
– εc > 2.7 x 10-5 [Aliferis, Gottesman, Preskill ‘05]
– εc > 6 x 10-6 with Pauli errors [R ‘05]
– εc ≥ 10-4 (today)
– εc = 1/2 for Bell measurement erasure errors (detected errors) [Knill ‘03]

Examples:

Fault-tolerance threshold myths:
Independent probabilistic noise.

Nonlocal gates.
Maximize the threshold regardless of the overhead.

For a physical error rate ε < εc, an N-gate ideal quantum
circuit can be reliably simulated with N poly(log N)
physical gates.

– Independent probabilistic noise
– εc > 0 [Aharonov & Ben-Or ‘97, Kitaev ‘97]
– εc > 2.7 x 10-5 [Aliferis, Gottesman, Preskill ‘05]
– εc > 6 x 10-6 with Pauli errors [R ‘05]
– εc ≥ 10-4 (today)
– εc = 1/2 for Bell measurement erasure errors (detected errors) [Knill ‘03]

– Non-Markovian local noise [Terhal/Burkard ‘04, Aliferis/Gottesman/Preskill ‘05]
– Correlated noise [Knill/Laflamme/Zurek ‘97]
– Local interactions

– 2D grid (nearest n’bor), 1D line (next-nearest) [Gottesman ‘99]
– with correlated noise [Aharonov, Kitaev, Preskill ‘05]

Examples:

Threshold theorems

4

Outline
 Idea for improved ancilla verification for error correction: Differently

prepare ancillas to verify against each other
– Makes postselection unnecessary with 7-qubit Steane code [Aliferis]
– Halves preparation complexity for 23-qubit Golay code (1200 → 600 CNOT
gates). Allows detailed combinatorial analysis to show high provable threshold
(10-4)

 Idea: Differently prepare ancillas to
verify against each other

– No postselection for Steane code [Aliferis]
– Halves preparation complexity for 23-qubit
Golay code

Outline

 Technical background
– Error correction
– Quantum ECCs
– Stabilizer algebra

 Ancilla preparation and verification
– Steane preparation and heuristic verification

– for Steane 7-qubit, distance-3 code
– for Bacon/Shor 9-qubit, distance-3 code

– Strictly fault-tolerant verification
– repeated purification
– tweaked

 Rigorous noise threshold for 23-qubit, distance-7 Golay code
– Technical setup
– Combinatorial analysis

5

EC

X

X X

X

X

a

b

a

a b

Def: CNOT

data

ancilla

Fact 1: Fact 2:
1-a

b

1-a

1-a+b

Steane-type error correction

X Z

Lo
gi

ca
l

op
er

at
io

ns

X Z

mZ

mX

Ph
ys

ic
al

op
er

at
io

ns

data

ancilla
mZ

mZ

X

X

X

ap
pl

y c
or

re
ct

io
n

Steane-type
error correction

6

X Z

data

ancilla

mZ

mX

Steane-type
error correction

Teleportation

mZ

mX

mZ

mZ

ap
pl

y c
or

re
ct

io
n

X

X

X

data

ancilla

mX

mX

mZ

mZ

X

X

X

Lo
gi

ca
l

op
er

at
io

ns
Ph

ys
ic

al
op

er
at

io
ns

Knill-type
error correction

data

ancilla

mX

mX

mZ

mZ

UL

X Z

data

ancilla

mZ

mX

Steane-type
error correction

mZ

mZ

ap
pl

y c
or

re
ct

io
n

X

X

X

Lo
gi

ca
l

op
er

at
io

ns
Ph

ys
ic

al
op

er
at

io
ns

Teleportation

mZ

mX

U

Knill-type correction
+ computation

7

X Z

data

ancilla

mZ

mX

Steane-type
error correction

mZ

mZ

ap
pl

y c
or

re
ct

io
n

X

X

X

Lo
gi

ca
l

op
er

at
io

ns
Ph

ys
ic

al
op

er
at

io
ns

Teleportation

mZ

mX

U

data

ancilla

mX

mX

mZ

mZ

UL

Knill-type correction
+ computation

Error correction properties

 Arbitrary state is brought back into
codespace (except with controlled errors:
weight-k errors with probability O(pk))

 On states with controlled errors, no
logical effect is applied (and errors remain
controlled)

8

Remarks

 Computation can “typically” continue
without waiting for error-correction
measurements to complete

– (when correction information becomes
available, propagate corrections through the
circuit)

 High-fidelity ancillas do not suffice (need both
high fidelity and uncorrelated errs)

 Ancilla verification
– Ancillas can’t be used until verified, so
computation has to wait for verification
measurements to complete

 Ancilla factories
– Prepare many ancillas in parallel and in
advance, so a verified ancilla is always ready

 High overhead

Quantum error-correcting codes

 [[n=4,k=2,d=2]] erasure code
– used in Knill’s fault-tolerance scheme together with certain [[6,2,2]] code

 [[5,1,3]] code
– not CSS — stabilizer includes, e.g., XZZXI

 Steane [[7,1,3]] code

 Bacon/Shor [[9,1,3]] operator ECC

 [[15,1,3]] Reed-Muller code
– allows for transverse (X+Z)/√2 application (for universality), but not self-dual

 Golay [[23,1,7]] code

distancephysical bitslogical bits

CSS code: All stabilizers can be written
as product of Xs or a product of Zs

codespace = simultaneous +1 eigenspace of code stabilizers

9

 E.g., Steane [[7,1,3]] code corrects arbitrary error on one qubit
– Based on classical Hamming [7,4,3] code

 Classical codewords in the 0/1 basis
Correct bit flip X errors

 Classical codewords in the +/- basis
Correct phase flip Z errors

CSS quantum stabilizer codes

 Corrects arbitrary error on one qubit
– Based on classical Hamming [7,4,3] code

Steane [[7,1,3]] quantum code

 Simultaneous +1 eigenspace of 6 independent Pauli “stabilizer” elements

10

 Def: S stabilizes if
 Rules:

– S, T stabilize ST stabilizes
– S stabilizes stabilizes

 Def: Pauli group = tensor products of Pauli operators I, X, Y or Z (with phase ±1 or ±i)
– note all Paulis have half eigenvalues +1, half -1; pairs of Paulis either commute or anticommute

 Def: Stabilizer state on n qubits = intersection of +1 eigenspaces of n
independent commuting Paulis

 Example:

Stabilizer algebra

Operation State
Stabilizer

 .

2. prepare

3. CNOT1,2

1. prepare

 Rule: S stabilizes stabilizes

 Def: Stabilizer state on n qubits = intersection of +1 eigenspaces of n
independent commuting Paulis

 Example:

Operation State
Stabilizer

 .

Stabilizer algebra

2. prepare

3. CNOT1,2

1. prepare

11

 Rule: S stabilizes stabilizes

 Example:

Stabilizer algebra

Initial stabilizers Final stabilizers

XIIIIII

IXIIIII

IIZIIII
IIIXIII

IIIIZII
IIIIIZI
IIIIIIZ

XIXIIIIXIXIXIIXIXIXIX

IXXIIXX

IIIXXXX
ZZZIIII
ZIIZZII
IZIZIZI
ZZIZIIZ

ZIZIZIZ
IZZIIZZ
IIIZZZZ
ZZZZZZZ

Steane code

Outline
 Idea: Differently prepare ancillas to

verify against each other
– No postselection for Steane code [Aliferis]
– Halves preparation complexity for 23-qubit
Golay code

 Technical background
– Error correction
– Quantum ECCs
– Stabilizer algebra

 Ancilla preparation and verification
– Steane preparation and heuristic verification

– for Steane 7-qubit, distance-3 code
– for Bacon/Shor 9-qubit, distance-3 code
– for higher-distance codes

– Strictly fault-tolerant verification
– repeated purification
– tweaked

 Rigorous noise threshold for 23-qubit, distance-7 Golay code
– Technical setup
– Combinatorial analysis

12

Steane encoded ancilla preparation

Steane encoded ancilla preparation

13

Steane encoded ancilla preparation

Steane heuristic verification
 Steane encoding circuit:

– Gives correlated errors
– e.g., weight-two X errors occur with 1st-
order probability

– Z errors are not correlated, so Z error
verification is not required.

– ZL ~ ZZZ has no effect on ; two-
bit error ZZI has same effect as IIZ, so all Z
errors have reduced weight either 0 or 1.

Verification against X errors is
required for fault tolerance

14

 Purification: Prepare two ancillas, check one against the other. Postselect on no
detected errors in second ancilla.

 In general: (but with a distance-3 code, this simplifies)

 Steane finds, roughly, that one round of purification works well (according to
simulations). However, this is not strictly fault-tolerant for codes of distance > 3.

Steane heuristic verification

X errors X and Z errors

Def: Fault-tolerant: Weight >1 errors
are at most second-order events

Def: Strictly fault-tolerant: Weight-k
errors are at most kth-order events,
k ≤ t+1=(d+1)/2

Suffices for threshold existence

Required for p → pt+1 effective error
behavior

[Steane, quant-ph/0207119]

7

Encoding complexities

Encoding complexity can depend on code presentation.

[[, ,]]
qubits

encoded
qubits distance

rounds # gates

→ efficient

15

Avoiding verification: Bacon/Shor 9-qubit code
 Shor’s code: Concatenate 3-qubit repetition code with its dual

– Repetition code: 0 → 000, 1 → 111

– Dual repetition code: ,

– Concatenation:

 Bacon: Remove code redundancies
– Operator error-correcting code

Stabilizers ZZI, IZZ, ZIZ.
Logical X is XXX, logical Z is ZII ~ IZI ~ IIZ.
Corrects one bit flip (X) error.

Stabilizers XXI, IXX, XIX.
Logical Z is ZZZ, logical X is XII ~ IXI ~ IIX.
Corrects one phase flip (Z) error.

Corrects one X error in
each block of three,
and one Z error.

Stabilizer
generators:

Ike covered this…
 Shor’s code: Concatenate 3-qubit repetition code with its dual
 Preparing encoded ancilla :

 Bacon: Restore X/Z symmetry

Stabilizer
generators:

Thus , and requires no Z verification. [Aliferis]

16

Z Error weight

Error order with

0 1 2 3

0 1 1 10 verifications
0 1 2 21 verification

0 1 2 32 verifications

 Purification: Prepare two ancillas, check
one against the other. Postselect on no
detected errors in second ancilla.

 In general, repeated purification:

Def: Fault-tolerant: Weight >1 errors are at
most second-order events
Def: Strictly fault-tolerant: Weight-k errors
are at most kth-order events, k ≤
t+1=(d+1)/2

Golay code naïve verification

X Error weight

Error order with

0 1 2 3 4

0 1 1 1 10 verifications

0 1 2 2 21 verification

0 1 2 3 32 verifications

0 1 2 3 43 verifications

 For distance-seven code, generically need three rounds of verification against X
errors, and two rounds of Z verification.

 Repeated purification circuits:

Golay code naïve verification

17

 Repeated purification circuits:

Golay code naïve verification

Round 1 Round 2 Round 3

Round 1 Round 3

Smarter verification for Steane code
 Observe: X errors are correlated, but not arbitrary.

 Assume at most one X error occurs
during preparation. What are the
possible errors on the ouput?

– Arbitrary single-bit errors (of
course)
– But what else?

X X

X
X

X

Round 2

X X

X
X

X

XIXIXIX
IXXIIXX
IIIXXXX

X stabilizers:

18

Round 1 Round 2 Round 3

Round 1 Round 3

 Observe: X errors are correlated, but not arbitrary.

 Assume at most one X error occurs
during preparation. What are the
possible errors on the output?

– Arbitrary single-bit errors (of
course)
– But what else?

Round 2

XIXIXIX
IXXIIXX
IIIXXXX

X stabilizers:

X X

X X

X

X

X

X

X

X

X1 X3 X5 X7 ~I

Smarter verification for Steane code

Round 1 Round 2 Round 3

Round 1 Round 3

 Observe: X errors are correlated, but not arbitrary.

 Assume at most one X error occurs
during preparation. What are the
possible errors on the output?

– Arbitrary single-bit errors (of
course)
– But what else?

Round 2

XIXIXIX
IXXIIXX
IIIXXXX

X stabilizers:

X X

X

X

X

X

X1 X3 X5 X7 ~I
X1 X5 X7 ~X3

Smarter verification for Steane code

19

Round 1 Round 2 Round 3

Round 1 Round 3

 Observe: X errors are correlated, but not arbitrary.

 Assume at most one X error occurs
during preparation. What are the
possible errors on the output?

– Arbitrary single-bit errors (of
course)
– But what else?

Round 2

XIXIXIX
IXXIIXX
IIIXXXX

X stabilizers:

X

X

X

X1 X3 X5 X7 ~I
X1 X5 X7 ~X3

X1X7
X2X3
X4X5

Smarter verification for Steane code

Round 1 Round 3  With one X error during
preparation, what are the
possible output errors?

– Arbitrary single-bit
errors, and

– Arbitrary single-bit
errors, and

Round 2

XIXIXIX
IXXIIXX
IIIXXXX

X stabilizers:

X1X7
X2X3
X4X5

Smarter verification for Steane code

Round 3 Round 1Round 2

X1X3
X2X6
X4X7

Conclusion: Applying
CNOTs from a 123 ancilla

into a 321 ancilla,
correlated output errors
from a single gate error
can be distinguised, and

corrected for.

→ don’t correct!

→ correct!

20

 With one X error
during preparation,
possible output
errors are:

– Arbitrary single-
bit errors, and

– Arbitrary single-
bit errors, and

XIXIXIX
IXXIIXX
IIIXXXX

X stabilizers:

X1X7
X2X3
X4X5

Smarter verification for Steane code

Round 1 Round 3Round 2

Round 3 Round 1Round 2

X1X3
X2X6
X4X7

Conclusion:
Applying CNOTs from a 123
ancilla into a 321 ancilla,
correlated output errors from a
single gate error can be
distinguised, and corrected for.
Postselection on no detected
errors is not necessary. [Aliferis]

→ don’t correct!

→ correct!

Consequences:
- No need for ancilla to wait
for measurement results
before using it.
- Reduced overhead.
- Provable threshold
increases, but conceivably
ancilla reliability decreases.

Consequences:
– No need for ancilla to wait for

measurement results before
using it.

– Reduced overhead.
– Provable threshold increases,

but ancilla reliability may
decrease.

X.X..X..XXXXX..........
XXXX.XX.X....X.........
.XXXX.XX.X....X........
..XXXX.XX.X....X.......
...XXXX.XX.X....X......
X.X.X.XXX..X.....X.....
XXXX...X..XX......X....
XX.XXX...XX........X...
.XX.XXX...XX........X..
X..X..XXXXX..........X.
.X..X..XXXXX..........X

Golay code preparation and verification

Stabilizers:

21

Golay code preparation and verification

1.2..3..4567X..........
2345.67.1....X.........
.2345.67.1....X........
..5671.23.4....X.......
...7143.56.2....X......
3.7.2.156..4.....X.....
4562...1..73......X....
51.367...42........X...
.71.452...36........X..
6..1..43725..........X.
.6..3..42715..........X

Preparation circuit (shorthand):

7 rounds s s

Golay code preparation and verification

1.2..3..4567X..........
2345.67.1....X.........
.2345.67.1....X........
..5671.23.4....X.......
...7143.56.2....X......
3.7.2.156..4.....X.....
4562...1..73......X....
51.367...42........X...
.71.452...36........X..
6..1..43725..........X.
.6..3..42715..........X

Preparation circuit (shorthand):

7 rounds

s s

Verification by repeated postselection:

22

Golay code correlated errors

Abstract out:
XXXXXXXX

X X

X

X

X
X

X

X
X
X

X

X
X
X
X

X

X
X
X
X
X

Possible output errors from single X failure:
Xs on
01234567 ~
0 234567 ~ 1
0 34567 ~ 12
0 4567 ~ 123
0 567 ~ 1234
0 67 ~ 12345
0 7 ~ 123456

0

1

2

3

4

5

6

7

If we reversed the rounds…
07654321 ~
0 654321 ~ 7
0 54321 ~ 67
0 4321 ~ 567
0 321 ~ 4567
0 21 ~ 34567
0 1 ~ 234567

Possible output errors from two X failures:
consecutive sequences [a,b] = [a,a+1,…,b-1,b] e.g. 2345

Golay code final preparation and
encoding circuits

A=1243567
B=6274531
Ar=7653421
Br=1354726

Round
permutations:

Conclusion:
- Reduces verification circuit complexity by half.
- Reduces overhead esp. at high error rates.
- Increases provable threshold (reduced
combinatorial complexity allows much better computer-
aided counting analysis).
- But ancilla reliability may decrease.

Prepare two ancillas
using round permutation A.
Verify once against X errors
(measuring transversely in
Z eigenbasis).

Prepare two ancillas
using round permutation Ar

(A reversed).
Verify once against X errors.

Verify once against Z
errors (transverse X
measurement).

Prepare two ancillas using
round permutations B and
Br. Verify against Z errors.

Verify against
X errors again.

Checking fault-tolerance reduces to checking
following circuits:

23

 Aharonov & Ben-Or threshold proof:
– Idea: Maintain inductive invariant of (1-)goodness. (A good block “has at most one bad subblock.”)

– Inefficient analysis:
– not for a distance-five code
– No threshold for concatenated distance-three codes

 [R ‘05, Aliferis/Gottesman/Preskill ‘05] proofs apply too to distance-three codes
 Idea: Maintain as inductive invariant recursive control over the probability distribution
of errors in each block

 Gives rigorous (and fairly efficient) criterion for threshold

EC

EC

Analysis

Combinatorial analysis

ECX

ECX

ECZ

ECZ

ECX

ECX

ECZ

ECZ

24

Conclusion

 Idea: Differently prepare ancillas to verify against each other
– No postselection for Steane code [Aliferis]
– Halves preparation complexity for 23-qubit Golay code [Y. Ouyang, B.R.]

 Technical background
– Error correction
– Stabilizer algebra
– Quantum ECCs

 Ancilla preparation and verification
– Steane preparation and heuristic verification

– for Steane 7-qubit, distance-3 code
– for Bacon/Shor 9-qubit, distance-3 code
– for higher-distance codes

– Strictly fault-tolerant verification
– repeated purification
– tweaked

 Rigorous noise threshold for 23-qubit, distance-7 Golay code
– Technical setup
– Combinatorial analysis

 Result: Threshold of 9.8 x 10-5, or >
10-4 with 99.9% statistical confidence.

 Simulations haven’t been run to
estimate actual improvement.

 Other effects, particularly locality, still
need to be analyzed.

 Analyze schemes which aren’t
strictly fault-tolerant.

 Consider schemes with no
verification required.

